An Either Ore Situation

Titanium, the king of metals, scraps for a home in Denver.

A few years later, the German scientist Martin Heinrich Klaproth observed what seemed to be a new oxide in a specimen of the mineral rutile that had been unearthed in Hungary. Klaproth had heard of Gregor's discovery, and he determined the English sand to be identical to the oxide he had isolated. He didn't think much of Gregor's name for the substance, however, and decided to name the new metallic genus after the sons of the Earth goddess Gaea from Greek mythology.

Still, more than a century would pass before titanium began to be seriously considered for industrial use. General Electric funded research on its use in electric lamps in 1910 but was disappointed with the results. Despite a lack of commercial success, the scientist who conducted that research, Matt Hunter, is recognized as the first person to figure out a way to extract titanium from ore.

Titanium's big breakthrough didn't come until the late 1930s, when another German scientist, William Kroll, invented the process that allowed for the first commercial production of the metal. Kroll fled Germany in 1940 and went to work for Union Carbide at its research laboratories in Niagara Falls, New York. There he perfected the process that is still in use today. The complexity of the manufacturing process is usually blamed for the metal's high cost.

Mark Poutenis
Joe Simmons of BlueSky Studio designed the Titanium building on Wazee Street.
Anthony Camera
Joe Simmons of BlueSky Studio designed the Titanium building on Wazee Street.

"They need to find a cheaper way to extract it from the ore," says Ken Gall, professor of mechanical engineering at the University of Colorado at Boulder. "It would mark a large technical advance if that process could be improved."

One of Timet's competitors invested millions in a new production process that was supposed to cut costs, says Martin, but it was unsuccessful. Research on cheaper ways to create titanium is under way in Europe, but he isn't expecting any dramatic change.

"There's no breakthrough at hand," Martin says. "There are a lot of obstacles to overcome."

Titanium didn't really take off until the late 1940s. By that time, Kroll was working for the federal Bureau of Mines, which was funding research on new metals. It soon became clear that titanium would have its most useful application in aircraft, and that drew the attention of the military. The Air Force and the Navy were both interested, and a classified 1948 report urged the government to spur the production of titanium as "a potential engineering construction material of great importance."

By then, the metal's mysteries, which had intrigued scientists for years, started to reach the press, and the titanium mystique was born. In 1948, a Saturday Evening Post story about it was headlined "Our Next Magic Metal?" The article was breathless about titanium's potential:

"When flame-spurting space ships someday smash through storms of meteors between the planets, their silvery hulls probably will be fabricated of a rustless metal as strong as the best steel, but only half as heavy. When in the nearer future atomic furnaces generate power for industry, they will be made, according to best predictions, of some alloy of the same metal. From a compound of this metal, scientists already are making precious stones more dazzling than diamonds. This is titanium, Cinderella of the elements."

It was against this backdrop that Timet was formed. The company was founded in 1950 in New York, just as the Cold War spurred a rise in defense spending. Soon there was a rush of companies eager to exploit the miracle metal and win huge military contracts. Household names like Dow Chemical, Du Pont, Monsanto and Union Carbide joined a dozen competitors trying to corner the market on titanium.

"This Cinderella metal seems a heaven-sent answer to the prayers of gold-braided admirals," read the Post story. "There is the prospect of titanium destroyers and submarines, titanium fighters and bombers, titanium transocean passenger planes, and titanium railroad trains."

The 1950s saw the first uses of titanium in aircraft parts. The B-36 bomber was designed to include several hundred pounds of titanium parts. The North American F-86 Sabre Jet was the dominant fighter aircraft during the Korean War, and titanium was used both in its airframe and its engine. In 1953, several U.S. Senate hearings were held on the need for minerals in wartime, and Congress began pressuring manufacturers to create a steady supply of titanium. Senator James Murray of Montana said titanium "is a must if America is to maintain air supremacy."

Aircraft manufacturers realized that titanium could be used in the manufacture of commercial planes as well, and Douglas Aircraft started using titanium parts on the DC-7.

The excitement over titanium soon ran into familiar hurdles. The metal was more difficult to produce than steel and, consequently, more expensive. Many manufacturers dropped their ambitious plans for titanium, and Fortune magazine dubbed it the "mañana metal, for which tomorrow never seems to come." Business Week wrote: "Producers of titanium, the wonder metal, are wondering where the wonder went."

Although titanium never became the metal for everyday use that backers hoped for, it did establish enough of a niche market to sustain regular production over the coming decades. The military was a consistent customer, using titanium in missiles as well as aircraft. In the mid-1960s, Lockheed created the SR-71 Blackbird reconnaissance aircraft, made entirely of titanium. The growth of the airline industry and the development of passenger jets also created a regular demand for titanium.

« Previous Page
Next Page »
My Voice Nation Help